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Abstract

A highly influential factor in the performance of image
processing algorithms is the amount of noise present in the
digital image. A priori knowledge of the expected levels of
noise in the image dramatically improves the performance
and efficiency in image processing routines. In a digital
photofinishing system, image noise is primarily attributed
to film grain and scanner noise.  Therefore, if the film and
scanner sources are known, it is possible to deduce the
expected noise level in a digital image. However, image
processing applied to the image after scanning will affect the
noise statistics. In order for the image processing algorithms
to deliver optimum performance, the estimated noise
statistics need to be modified according to each processing
step applied.

We consider image-processing operations as applying
transformations to the image data, and corresponding ones to
the image noise statistics. We will discuss analytic
equations that approximate the propagation of image noise
statistics through several basic image transformations, and
their interaction with algorithms in a digital photofinishing
image chain.

Introduction

Many image processing operations require noise information
in order to properly adapt its parameters to the expected
conditions. An example of this type of image processing
operation is a noise reduction algorithm, such as the one
described by Lee,1 that uses a table of noise root-mean-square
(rms) values for each color record for every signal level.
Thus, if the rms value is computed for uniform image areas
of various signal levels, the set of these values can be seen
to characterize the amplitude of image noise in actual scenes
acquired using the same image source, as a function of
image signal. The rms statistics could be used to adaptively
discern texture from noise in localized regions of an image.

During the processing of image information in a
multistage imaging system, however, noise statistics are
usually changed by every operation or transformation applied
to the signal. If this transformation of noise statistics is not
taken into account, then subsequent adaptive operations will
not operate as intended and system performance, usually in
terms of image quality, will suffer.

One way to account for the transformation of the non-
image information is to estimate it directly at every step in
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the imaging system.2  This estimation step could be used in
imaging systems where the image processing operations are
deterministic and there exists flexibility to process the set of
uniform patches. However, it does not account for adaptive
transformation of the noise statistics after the estimation
step.

In this paper, we assume that having information
available about the image statistics provides a potential
advantage for improved image quality and system reliability,
and reduced computation. Image noise propagation through
several common imaging operations is addressed in the
article by Burns and Berns.3 The analysis was not, however,
applied to the transformations of noise statistics in image
processing systems for use by adaptive algorithms.

Method

A digital imaging system consists of three main elements as
depicted in Fig. 1: an image capture device, an image
processing engine, and an output device. The image capture
device provides the means to digitize the captured scene,
e.g., a digital camera, film scanner, etc. The image
processing engine provides the means to correct or enhance
the digital image via several imaging transform, as depicted
in Fig. 2. Each block in the imaging processing engine
corresponds to imaging transforms applied to the digital
image. The output device provides the means to output the
corrected or enhanced digital image, e.g., softcopy display,
paper hardcopy, etc. A conventional digital photofinishing
system consists of color negative/reversal film plus a film
scanner (acting as the image capture device), and a digital
printer (acting as the output device) to produce hardcopy
prints of the corrected digital image. The image processing
engine could consist, as presented in Fig. 2, of a series of
sequential operations applied to the digital image. The
operations may include:
• Matrix rotations
• One dimensional Look-Up Tables (LUTs)
• Multidimensional Look-Up Tables, e.g., 3DLUTs
• Spatial Filtering
• Adaptive Algorithms

Image
processing

Image
capture

Output
device

Figure 1.  Image processing system



IS&T's 2000 PICS ConferenceIS&T's 2000 PICS Conference Copyright 2000, IS&T
…
trans. 1 trans. 2 trans. n

Figure 2.  Image processing steps as transformations of the
digital image data from input to processed image

Operations such as matrices, LUTs, convolution, etc.
do not take into consideration noise present in the digital
image. However, adaptive algorithms, such as adaptive noise
reduction and adaptive sharpening algorithms, take into
consideration the expected amount of noise present in the
digital image. We refer to this superset of adaptive
algorithms as noise sensitive algorithms. In a digital
photofinishing system the source of the noise is attributed
mainly to film grain and scanner electronics noise.
Therefore, the estimated amount of noise is usually known
at the capture stage of the digital photofinsihing system.
Knowledge of the noise statistics improves a noise reduction
algorithm's capability to discern image content from noise,
and do a better job in reducing noise without affecting image
texture; or a sharpening algorithm's capability to sharpen
image content without amplifying the noise in the digital
image.

Image processing engines, including noise sensitive
algorithms, need to account for linear transformations
applied to the digital image preceding the noise sensitive
algorithm modules. Otherwise, the estimated noise at the
image capture stage will not be accurate when it reaches the
noise sensitive algorithm module, resulting in non-optimal
algorithm performance. We propose a scheme as the one
presented in Fig. 3. In this digital imaging system, the
image processing engine consists of two parallel paths. Path
1 corresponds to the transformations applied to the digital
image and Path 2 corresponds to corresponding
transformations applied to the image noise statistics. Each
noise transformation module in Path 2 has a one to one
correspondence with the image transformations in Path 1. In
this fashion, the noise statistics used by the noise sensitive
module will more accurately represent the expected amount
of image noise present in the digital image, resulting in
optimal performance and optimal image quality.
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Figure 3.  Image processing operations {S}, where the second i s
noise-sensitive. The image noise characteristics are modified b y
corresponding transformations {N}.

Referring to Fig. 3, we now use methods for the
propagation of image noise statistics in a digital
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photofinishing system. The mathematical formulations
presented correspond to a limited representative subset of
imaging transforms, namely matrix operations, 1D LUT
operations, and 3D LUT operations. These noise
propagation formulations represent practical approximations.
For more details on the source of these approximations refer
to Ref. 3.

Noise Propagation Techniques for Several
Imaging Transforms

The influence of several common image processing
operations on image noise will now be described, with
emphasis on the rms fluctuations and the correlation (or
covariance) between color signals. The noise statistics can
be stored as table statistics. Consider the set of color
signals, x . We can represent the second-order statistics as a
covariance matrix

=Σ
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where x = ,  ,  p q r[ ]T and the square roots of the diagonal
elements of Σ x  provide the rms noise values, and the
superscript T indicates the transpose. Note that each element
of the covariance matrix can be a function of the mean
signal levels. In the following, the symbols Σi and Σi+1, will
indicate the covariance matrices as a function of signal level
corresponding to the noise present in the images fi(x,y) and
fi+1(x,y), after steps i and i+1, respectively.

Figure 3 presents an example of the noise variance
terms ( rrσ , ggσ , and bbσ ) as function of signal. In this
case, the signal is represented as film density as measured by
the film scanner. For each image transformation fi(x,y), the
corresponding transformation of the image noise statistics,
representing the noise transform i, is determined.

Multidimensional Transformation
The multidimensional nonlinear transformation is  a

general operation, for which several common operations are
special cases. If the image transform is a multidimensional
function, it may be defined by a continuous function for
each image record, as many color-space transformations are.
The transformation, G, and operates as

f Gfi i+ =1

it can be expanded, for a three-color system,  as
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where the sets of input and output signals are {p, q, r} and
{s, t, u}, respectively. The corresponding covariance matrix
transformation is approximated by 5

Σ Σi i+ ≈1 J JG G
T , (2)
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where JG  is the Jacobian (derivative) matrix, This is given
by
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Matrix Transformation
If the image transform is a linear matrix [3,4]

f Mfi i+ =1 (4)

this is seen as a special case of Eq. 1, where the derivative
coefficients of JG are fixed and equal to the elements of the
matrix. Thus Eq. (2) becomes

Σ Σi i+ =1 M MT .     (5)

One-dimensional Continuous Transformation
If the image transform is a one-dimensional nonlinear

transformation, it may be defined by a continuous function
for each image record, as many color-space transformations
are. The transformation, G, and operates as

f Gfi i+ =1

now the expanded form of Eq. 1 is
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The corresponding covariance matrix transform is still given
by Eq. 2, but now the off-diagonal terms of JG  are zero.

One-dimensional Look-up Table
If the image transform consists of a one-dimensional

LUT, this can be seen as a discrete form of the above one-
dimensional function.  If so, the three diagonal partial
derivative elements of JG  can be approximated by

∂
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or
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or other similar digital filter , where the discrete signal take
on integer values, {0, 1, 2…}. The transformation of Eq.2
can be accomplished by first estimating non-zero diagonal
elements of JG .
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3.4 Multidimensional Look-up Table
 If the image transform consists of a multidimensional

LUT, such as a 3DLUT, it can be seen as a discrete form of
the Eq. 2.  If so, the partial derivative elements of JG  can
be approximated by discrete differences of Eqs. 7 and 8,
except that now all six elements are needed for Eq. 2.

Example Noise Propagation

Consider the image processing system of Fig. 1, where the
image capture stage results in the rms image noise
characteristics (shown in Fig. 4), for a given color-record.
The mean (signal) and RMS (noise) data are given in terms
of a ten-bit encoded signal [0-1023] scale. This noise
characteristic can be taken as the result of photographic film
and scanner, or digital camera. Digital mages acquired in this
way are then processed using an image processing chain, as
in Fig. 3, where one step is noise-sensitive. This step, 2S ,
may require an explicit noise table as described above, or
have an implicit sensitivity based on general noise level.

In the example system, the first image processing step
is a one-dimensional LUT aimed at, e.g., improving the
estimation of scene exposure. Note that such a table is often
computed from scene statistics and, therefore, varies from
image to image. This LUT is described in Fig. 5. When the
image is processed using this table the corresponding
transformation of the image noise characteristics is via Eq.
8. The derivative array was simply computed from the LUT.
The resulting image noise data are shown in Fig. 6.

The amplification of the rms noise for low signal levels
has easily been computed without requiring estimation from
the image data. Subsequent processing steps can account for
this by e.g., modifying spatial processing such as
sharpening, noise reduction, and compression.
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Figure 4.  Example input image noise characteristics
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Figure 5.  Look-up table applied as the first image processing
step
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Figure 6. Modified image noise characteristics
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Conclusions

Image processing steps can be thought of as applying
transformations to both image signal and noise
characteristics. The propagation of noise statistics, in the
form of noise tables for several common operations has been
described. For multistage photofinishing and other scene-
adaptive systems, this approach provides a tool for design
and optimization of explicitly noise-sensitive steps. In
addition, it is useful in supporting rules based on general
image noise levels, and digital image sources.
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